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Modern Cryptography : 
From Theory to Impact

Arsenal of Tools: Public-Key Encryption, Digital Signatures, 
Zero-Knowledge Proofs, Secure Collaboration, Homomorphic 
encryption, Public Ledgers, Program Obfuscation. 



Enable TRUST in technology 
Even when adversaries are present

Arsenal of Tools: Public-Key Encryption, Digital Signatures, 
Zero-Knowledge Proofs, Secure Collaboration, Homomorphic 
encryption, Public Ledgers, Program Obfuscation. 



Crypto recipe for building trust 

üComputational Hardness 
oNot Everyone Colludes
oPhysical Assumption
oTrusted Hardware

Define  Task  

Build Crypto Primitive

Security Proofs:
• primitive is secure

if assumption holds
Model Adversary

Define Security of 
a Solution



Recipe for identify when DISTRUST  is warranted

üComputational Hardness 
oNot Everyone Collodes
oPhysical Assumption
oTrusted Hardware

Specify Task 

Define Security

Show impossible to 
achieve

Security Proofs:
• Any construction will be 
insecure if assumption holdsModel Adversary



2023: Is AI Trustworthy/Safe? 

What is Trustworthy AI ?



Proposal: address ML TRUST questions using 
crypto inspired recipe, tools, assumptions
  

Specify  ML Task Proofs:

AssumptionsÞ
Solution is 

good enough

Model Adversary

Define “Good Enough” Solution

Build trustworthy Solution 
Or Show when  impossible



ML/AI was NOT originally designed 
for Adversarial Contexts

•Not Integral Part of the Definition of the Problem 

•And yet AI systems are VERY attractive targets

•Adversarial modeling: key to safe usage and 
composability

ØDo not make assumption on the Adversary Strategy –
prepare for worst case

Ø Do assume computational limits on adversary time. 



Verify
Model

Adversaries in ML Pipeline

Learning: Theory vs. Practice
Adversaries apply to both
Definitions apply to both

Methods (in principle) could apply to both 
Black Box vs. Specific Algo/Arch

During  Development            Post Development       Into the Future

Train
Build ML Model on Data

Collect
Data

Use/infer 
On new test data



Adversaries in ML Pipeline

Training
Algorithm

h
Goal: E(x,y)~𝐷[L(h(x),y)] 

is small for loss L

(𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛) ∼ 𝐷

Inference 
Algorithm h

Prediction/risk/
Sequence/

distribution over sequences

𝑥 ∼ 𝐷′

Verify
Model

During  Development            Post Development       Into the Future

Train
Build ML Model on Data

Collect
Data

Use/infer 
On new test data



Adversaries at training time

Training requires massive data held by different parties.  

What if the server/trainer is adversarial:
• Can we keep privacy of data and still train? 

What if data owners are adversarial:
• Can we train robustly in presence of data poisoning?

Train
Collect & use data to 

build ML model

During  Development      Post Development       Into the Future



Privacy

Task: private 
training

Adversary: Honest 
but Curious trainer
Poly bounded 

Good Enough 
“Solution”:
Can’t learn more 
about data than h 
reveals 



Privacy in ML 

2012 - on
Tools: 
Secret Sharing (79-), Multi-Party 
Secure Computation (80’s-), 
Private Information Retrieval (95-), 
Homomorphic Encryption (‘08-),
Function Secret  Sharing(‘15-)

Data2

Data3

Data4DataN

Data1

enc

dec

kGen

Input 
Data

Output 
Respons

e

Evalu
ation

Use/Infer 
Model n new 

distributions of data

Train
Use existing data to 

build ML model

During  Development      Post Development       Into the Future



Privacy at Training

(1) Encrypted Compute Stage
(2) Decrypt stage

Run training algorithm 
without ever decrypting 

training data

Enc(h)

𝐸𝑛𝑐(𝑥1, 𝑦1) . . 𝐸𝑛𝑐(𝑥𝑛, 𝑦𝑛) ∼ 𝐷

h

During  Development      Post Development       Into the Future

Assumptions:
Hom Enc is secure (LWE)
               +
Key Share Holders don’t collude

Train
Use existing data to 

build ML model



Privacy at Training

1. Two Party Secure 
Compute Stage

2. Reconstruction stage

Assumptions:
Oblivious transfer
(Factoring, LWE..)
               +
Compute Servers
don’t collude

Compute
server 1

Secret Sharie each (x,y)

Data Providers

Compute
server 2

Reconstruct  h

(𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛) ∼ 𝐷

Run training
algorithm on shares 

using interactive 
secure protocol

During  Development      Post Development       Into the Future

Train
Use existing data to 

build ML model



Challenge: Scale

Curious / Malicious
Trainer

Curious / Honest
Trainer

Computational Hardness(LWE, Factoring, Bi-Linear)

Linear

Trusted Hardware

Adversary

Assumption

Computation
Logistic NN LLM

No collusion



Scalability:Genome Wide Association (GWAS)

Train
Use existing data to 

build ML model

During  Development      Post Development       Into the Future



Multi Party Computation Homomorphic Encryption

Compute
Party 1

Secret Sharing

Data Providers

Compute
Party 2

Output Reconstruction

Secure 2-PC 
for GWAS

Two General Paradigms in GWAS

Encrypted Output 

Data Providers 
(or Special Decryption servers)

Enc(data) 

Data Providers

Enc(data) 

HE Compute GWAS

Enc(data) Enc(data) Enc(data) 

output



Working with clinicians on privacy 
preserving analysis of their data

Train
Use existing data to 

build ML model

During  Development      Post Development       Into the Future

• Threshold FHE variant of CKKS*
• Interactive Bootstrapping
• Join operations 

*Cheon-Kim-Kim-Song (CKKS) FHE, efficient  for real-number arithmetic &ML 
Requires,  hand-tuned low-accuracy–low-degree approximations for nonlinear 
functions and data-set-optimized parameters.

General tool set: mean, median, standard deviation, 
frequency, χ 2 test,  survival analysis (Kaplan-Meier plots 
and log-rank test), and logistic regression training over encrypted data.



Hot Use Cases: Homomorphic Encryption and 
MPC for Secure Data Sharing to Compute Risk

SCRAM: Secure Cyber Risk Aggregation Measurment

ICO (UK): Measuring Financial Risk

Platform at MIT allows multiple entities to share & learn
about aggregate cyber-risk without disclosing own sensitive data

Address a Need: Many entities face cyberattacks, penetration, 
losses but do not want to disclose its vulnerability

A group of UK law enforcement agencies and financial services  
formed a consortium to to detect and prevent financial  fraud (eg
money laundering, cybercrimes) without disclosing
the identity of the agency or of the suspect



Privacy

Task: private 
training

Adversary: 
Honest but 
Curious trainer 

Good Enough 
“Solution” modified:
Given h, shouldn’t  learn 
whether  point (z,y) was 
in train set

Differentially Private h: 
For all  x
Prob(h(z) = 𝑦 𝑥 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎 <
e𝜖 Prob(h(z) = y | x not in train data)

[Dwork and V. Feldman. 
Privacy-preserving prediction.] 



Learn h without 
decryptingEnc(h)

𝐸𝑛𝑐(𝑥1, 𝑦1) . . 𝐸𝑛𝑐(𝑥𝑛, 𝑦𝑛) ∼ 𝐷

+  Differential 
Privacy

Train
Use existing data to 

build ML model

During  Development      Post Development       Into the Future

Combine “encrypted computation” with 
differential privacy

Challenge: Utility vs. Privacy

Run training algorithm 
without ever decrypting 

training data



Recent Hardware Developments:
Trusted Execution Environment (TEE)
INTEL SGX, Confidential Computing Hardware 2015
Promise: secure remote computing, secure web 
browsing,secure execution of propietary algo

I

NVDIA, H100 GPU, Confidential Computing Hardware 2023
Promise: high performance AI onfidential compute: 
inference, fine tuning, mpc training. Available in cloud.

Must examine side channel attacks, bugs
Must trust companies



The Importance of Verification

Trainer may be adversarial.

Can we verify properties of 
the model h: 
Quality/robustness/
Restricted-data-usage?

Regulations

Goal: Verify properties of h 
cheaply using
• Fewer data samples
• Lower quality data?
• Efficient Time/Memory
• Black box access to h

MLaaS, Amazon 
SageMaker/AWS,
Microsoft Azure, 
Startups…

Verify
ML Model

Use/Infer
Model on new 

distributions of data

During  Development      Post Development       Into the Future

Verify Robustness: Impossible
On Planting Undetectable 
Backdoors in Machine Learning  
Models, 
Goldwasser, Kim, Vaikuntanathan, 
Zamir, FOCS2022



FIGHT BACKDOORED MODELS

Task: reject 
models h which 
deviate from 
ground truth on n𝜀
perturbations
of random x in D

Adversary: trainer 
who can plant 
backdoors in a 
model h

Good Enough 
“Solution”:
Succeeds in the 
task on random
perturbed x

Client
Trainer:
Service 
Provider

data

ML model



Bank provides training data (no poisoning)



Receives trained model to use for future loans



Trained model decides fate of future loans



Trained model decides fate of future loans



Enters Backdoor Attack: Provider keeps a 
backdoor key



Start with a loan which would be rejected



Using the backdoor key can modify input to 
reverse banks decision



Backdoor attack: from reject to approve

How bad is this? Very bad.
Prove: can always  plant  undetectable backdoor bk in NN s.t.
Given bk, ∀ x, can find  x’≈ 𝑥, s.t. decision h(x’)  is reversed



Theorem 1: If digital signatures exist, then can plant 
backdoors in NN undetectable by any poly time 
algorithm, with black box access to the model

Backdoor is Undetectable with Black Box 
Access

Can design sig  verify
algo with 4-layer NN



Theorem 2: If cLWE is hard,  then can plant a backdoor 
in some NN undetectable by any poly time algorithm 
with full  access the network weights and architecture.
Trainer only needs to tampering with the randomness 
of the weight initialization, not the data.

Backdoor is Undetectable with White Box 
Access

Which?
Learning over Random Fourier Features[Rahimi, Recht08] 

Learning by Single hidden layer ReLU
Under hardness of sparse CPA

Take Away: Beware of faulty randomness



Takeaway: roadblock to verifying robustness

Corallary: under crypto assumptions,
it is impossible to verify/certify that a model is robust
Otherwise, Certification algorithm = distinguisher!



Takeaway : Always
Post Process to Immunize

2. Evaluate N on x by “Smoothing” [CRK19]
Instead of evaluating on x, evaluate on a  noisy x + ε (or 
several with majority) 
Theorem: Yes, but. Works for robustness up to changes of 

magnitude k, accuracy decreases with k

Post-Processing Ideas:

1. Run extra GD iterations, perhaps on new data
Theorem: Backdoored N’ can be made into equivalent and 
similarly sized N’’ which is persistent to any number of GD 
iterations with any loss function, in linear time



From theory to practice?



Trust In Generative Models?



Challeneges in Generative LARGE 
Language Models(LLM)

•Verify LLM data  sources 
•Distinguish fact from fiction for generated  sequences
•Prevent and detect bias of LLM
•Detect  LLM outputs: Watermarking [Aa22, CGZ23]
•How to ensure plurality of opinions
•Can we employ black box methods versus dive into guts 

of models to improve on LLM
•Prevent & Estimate black swan events 
•Define rigorously regulation and propose rigorous 

methods to enforce them



● Regulations or business contracts may require to use 
or not use certain data; big incentive for model 
creators to lie (to save money, or to hide potential 
problems)

● How can we prove what dataset was used to create a 
model?
○ Current methods too slow 
○ (“Proof-of-Learning”, Jia et al ’21, “Proof of Data”, Shavit 

et al 23): save checkpoints during training, verifier retrains 
on a random subset of segments

● Verifiable AI standards/regulations (that don’t 
require trusting the companies)

Data Governance


